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At the present time, due to numerous experimental and theoretical studies, the principles for calculation of  critical 
Reynolds numbers for transition of  a laminar boundary layer into a turbulent one have been formulated quite clearly on 
the basis of  linear hydrodynamic ,stability theory. The possibility of employing linear theory to determine the "transition 
point" is based on the fact that at sufficiently small perturbation amplitudes in the flow, the transition begins with the 
development of  so-called Tolmin-Schlichting waves, which can be described by linearized hydrodynamics equations. In 
this case a significant portion of  the transition region is connected with those Tolmin-Schlichting waves, and the region of  
nonlinear perturbation development is relatively small [ 1 ]. Therefore, perturbation evolution in the boundary layer may be 
described with sufficient accuracy on the basis of  linear theory, and the critical Reynolds number for transition may be deter- 
mined approximately from the section in which the perturbation first reaches a threshold dimensionless amplitude value of  
~.  ,,* 1% at which the strongly nonlinear stage of development sets in [ 1 ]. However, the basic problem in development of  a cor- 
responding method of  calculation at the present time is that of  transformation of perturbations occurring under experimental 
conditions into Tolmin - Schlichting waves. In [2] the following possible mechanisms for excitation of Tolmin - Schlichting 
waves in a boundary~layer were proposed: a) continuous generation over the entire extent of the boundary layer; b) generation 
in the vicinity of  the model's forward edge; c) generation in the developed boundary layer through concentrated action. The 
mechanism most widely studied is that of  Tolmin• wave generation at the forward edge of  the model. However, 
as the waves propagate down the flow to the point of  stability loss they may damp out severely, so that their effect on the 
boundary layer transition will be insignificant. For such models, the mechanism of generation over the entire extent of  the 
boundary layer is preferable. In [3] an analysis was performed of the interaction of  a turbulent track of  low intensity with 
an uncompressed boundary layer on a planar plate with the assumption of paraUelness of  the basic flow. The results showed 
that the perturbations considered penetrated the boundary layer only slightly and generation of  Tolmin-Schlichting waves 
was absent. In the present study the same problem proposed in [3] will be analyzed, with consideration of  a slight non- 
parallelism of  the flow in the boundary layer. It will be shown that interaction of  turbulent perturbations in the incident 
flow with Tolmin-Schlichting waves takes place, and analytical expressions will be obtained for determination of the in- 
tensity of  Tolmin-Schlichting wave sources. 

1. Formulation of  the Problem. We will consider the problem of development of  perturbations in an incompressible 
boundary layer on a plane plate within the framework of  linearized Navier-Stokes equations. The boundary conditions will 
then be as follows: at y = 0 (on the plate surface) the adhesion condition is satisfied; at x = x o (in some section at a distance 
x 0 from the leading edge of  the plate) perturbations u, v are specified (x and y are the components of  the perturbation 
velocity) as functions of  time; as x -~ ~ and y ~ o~ we impose the condition that the solution be finite. As usual, we turn 
to analysis of  individual harmonics with real frequency 60; the basic equations take on the form 
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where U, V are the velocity components of  the main flow (Blasius solution); v is the kinematic viscosity coefficient; A is 
the Laptacian; p is the pressure perturbation referred to the density. If  we now introduce the vector A = (A t , A 2 , A a , A+) 

A.~ = ~t, A2 = p,  A8 = v, A~  = Ou / Oy- -  Ov/Ox, 

then the original system (1.1) may be written in the form 

H1A = H -2-o A ~- HaA, Ox (1.2) 

where the operator H a is related to the terms containing V, aU/ax. In the given problem, it will be convenient to transform 
to boundary layer variables: 
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where U o is the velocity of the incident flow; x o is the coordinate of the initial section selected. 
flow function of the main flow has the form 

al~ = v~: :R l : / (O  +.O(R-l : ) ,  

where ffr~) is a solution of the Blasius equation, we can obtain from Eq. (1.2) the following system of equations: 

Considering that the 

(1.4) 

where the vector D is defined as 

D~ = -~o ' D~ A~ A~ v~/~R~ : 
= U-'-~o, D ~ = - - .  D ~ = A a  U0 ' U~ 

and the operators L~, L z, L a have the form 
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= ~ ; and the prime denotes differentiation with respect to ~7. Since we are concerned only with terms Here 13 ug 

of order R -~/2 , in the expression for L 3 we have omitted terms of higher order. The procedure used is analogous to that 
employed in [4]. 

2. E igenvectors .  

eigenvector A s, 
Before constructing a solution for system (1.4), we will define the problem of constructing the 

L1Aa ---- iaL2A~, (2.1) 
~1 = 0 A~I  = Ac~s = 0,  ~1 ~ oo IA~d < ~ ,  ~ = t ,  2, 3, 4 

and study the possible classes of eigenvectors. It can be shown that system (2.1) reduces to a single Orr-Sommerfeld 
equation for the components A~3, which we will denote by ~0 (g, ~7) 

t ((I)~ v --  2~ '~ ;  q- ='@0) (2.2) - (*; - - = 

with boundary conditions 

n=O r n---,-oo I0o1<~, (2.3) 

where the prime denotes differentiation with respect to ~7 and ~o depends upon ~ as upon a parameter. The remaining 
components of the vector A are easily expressed in terms of ~ .  

For r />>  1 (outside the boundary layer), Eq. (2.2) transforms into an equation with constant coefficients and its 
general solution may be written as 

where X satisfies the equation 

Now let cpl, q~, %, cp4 
e-Xn respectively. 

(Do = Cie ~n -F C~e -~'~ n t- CseX~ -F C4e-~n, 

�9 ~(~ - -  ~) = ( l l R i / 2 ~ 1 : ) ( ~  ~ _ a~). 
be particular solutions of Eq. (2.2), having, as 7/-~ ~ ,  the asymptotes e~n, e - an  eX~, 

These solutions are linearly independent, and the general solution of Eq. (2.2) has the form 
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We will now consider what requirements are imposed on the value of ot and the special solutions of Eq. (2.2) by 
the boundary conditions (2.3). In all, five different cases are possible, corresponding to five possible classes of solutions 
of Eq. (2.2) with boundary conditions (2.3). 

I) c~ is an imaginary number (~ -~ iy, ? > 0) .  In view of the boundary conditions as 7? -+ oo it is necessary to 
retain either ~o 3 or ~04, which correspond to exponential decay as 7? ~ oo. For def'miteness, we take the branch of the 
square root, upon which Re 3  ̀> 0. Then it follows from Eq. (2.3) that C 3 = 0, and the general solution of Eq. (2.2) 
has the form 

I r = cI~l + c~9~ + c , , , .  

This solution must satisfy the following boundary conditions at 7? = 0, i.e., 

C I c{~  (n = o) c{~..(~l = o) : ~ (n = o) o, 
I t I ~ , I 

C~9~ (n = 0) + C2~.. (n = 0) - r  c ~  01 = 0) = 0. 

Of this system of coefficients, C], C I, C ] are defined to the accuracy of a constant multiplier, i.e., r is defined 
uniquely to a normalized value. This class of solutions of Eq. (2.2) may be called pressure waves, in accordance with the 
classification presented in [5], since in this case as ~ ~ oo for a plane-parallel approximation 

O)o ~ -r- uze ), 

and if we calculate the dimensionless turbulence D4, we find D 4 = 0, while the dimensionless pressure perturbation D 2 is 
found to be nonzero. 

II) ~ is an imaginary number (~ = iy, ,? < 0) . While the waves of class I solutions decay exponentially away 
from the boundary x = x o and correspond to the effect of this boundary, class II waves will correspond to exponential 
growth as x -+ ~ and the effect of the righthand boundary in problems having such a boundary located at finite x = L. 
Waves of this class propagate leftward. 

III, IV) X = i 'h 7 is real, 0 < ? ~ oo . In this case ~ is defined as 

1., '2~1, 2 (R1/2~1/2 i~ 
~ I I I , I V  I t  E 1 + 1 -- rd/o~L,o " . 

Class III waves correspond to a minus sign in the expression for a. For t/1/2g 1/2 ~ o~ ialiI ~ --y2/R1/Z~l/2 + i[3 
waves of this class in the planoparalM approximation correspond to a solution of Eq. (1.4) in the form of waves propagat- 
ing down the flow and weakly damping with distance from the initial section x = x o. 

The plus sign in the expression for c~ corresponds to class IV waves, and for Ra,"2~ a/~ -+co iCqv ~, t/1/~ ~1/2 _ iS .  
In the planoparallel approximation class IV corresponds to a solution of Eq. (1.4) in the form of waves propagating up the 
flow, manifesting the effect of a boundary at x = L (if such occurs in the problem formulated). 

Class III and IV waves can be related to the turbulence waves of [5], since as ,1 -+ oo in the plane-parallel approxi- 
mation D 2 = 0, D 4 ~ 0. In the literature class III waves are also termed removal waves. 

V) a is complex, and 3, is complex, Re cr > 0, Re L ~ 0 ,  

As an example, we take Re a > 0 and Re 3, > 0 (the other possible signs of Re a and Re 3, are treated in a similar 
manner). 

In this case the solution of Eq. (2.2) has the form 

(I1~" v , V = C2 % ~ C4 %, 

and from the boundary conditions at 7? = 0 we obtain 

V 
C}'92 01 = 0) <: C~ 94 (n = 0) = 0, 

V t u t 
c2 ~ (n = o) + c~ q~ (n = o) = o. 

(2.4) 

The solubility condition for Eq. (2.4) will be 
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c~(~l = 0) " ' (2.5) �9 ~ ,  t,~ = 0 )  - m~ ( ~ 1 =  0 ) . ~ ,  (~  = 0)  = 0 .  

Equation (2.5) is a transcendental equation for determination of  a and may, depending on the value of R~, either have no 
solution in general, have a finite number of  solutions, or have an exact set of  solutions. To each root a of  Eq. (2.5) there 
corresponds an Orr-Sommerfe ld  solution of  Eq. (2.2), defined to the accuracy of  normalization. The question of  the 
spectrum of  solutions of  Eq. (2.5) in the case of  flow in a boundary layer is still unanswered at present, and will not be 
considered herein. Class V solutions correspond to Tolmin-Schlichting waves, which can either grow or decay down the- 
flow (depending on the sign of  Ima). Solutions of Eq. (2.5) with Re ot < 0 would then correspond to waves propagating up 
the flow. However, waves of  this class with Re a < 0 have not yet been detected in flows in a boundary layer. 

We will now define the product of  the two eigenvectors Aa ,  A.~ of  the classes considered above as 

( A ~ , A v ) = l i m  .~ A~iAvzexp(--eq)dq ' 
e-~l) ~' i = l  

where e > O. We may then substitute in the conjugate problem corresponding to Eq. (2.1) 

L~B v = iyL~Bv, 
~1 = 0 By._, = t~v~, ~1 ~ o~ IBv~l < o o ,  i = 1,  2 ,  3, 4, 

where L~, L* are operators conjugate to L 1 and L 2 , defined by the condition (LA, B) = (A, L 'B) .  It can easily be shown 
that if a § % then (L~A~, Br) = 0. 

3. Construction of a Solution to System (1.4). In constructing approximate solutions to system (1.4) we will limit 
ourselves to the following problem: Let a turbulence wave propagate down the flow with frequency 6o and specified ampli- 
tude at x = x o. Due to inhomogeneity of the flow in the x-direction [the operator L 3 in Eq. (1.4)] wave of  all classes I-V 
will develop in the flow. These waves will interact with the main flow and each other. In the present study this inter- 
action will be taken as a model of  the interaction of  turbulence of  the incident flow, in which a turbulence wave can always 
be distinguished, with waves in the boundary layer. For practical purposes, the most interesting of  these modes is formation 
of Tolmin-Schlichting waves, which alone of the five wave classes can grow in the direction of  their own propagation, and 
can in principle reach the  amplitude of  the original turbulence wave or even exceed it. Because of  the weakness of  inter- 
action between the various modes, in a first approximation we may retain only the original turbulence wave and the T o l m i n -  
Schlichting waves, neglecting the effect of  the remaining waves on these two modes. 

Construction of  the eigenvector Ars corresponding to a Tolmin-Schlichting wave reduces to solution of  the O r r -  
Sommerfeld equation (2.2) for AT~ a with boundary conditions 

~I = 0 cI~0~ = d)'o~s = 0, ~1-+ oo tl)0,~, ~o~-s-+ 0. 

The eigenvalue a is then determined from the condition of  solubility of  the boundary problem (Eq. (2.5)) and depends upon 
as upon a parameter. Construction of  the eigenvector A corresponding to the turbulence wave (class III) reduces to 

construction of  three linearly independent solutions of  Eq. (2.2) with asymptote e+-ivn, e-~n (since ~m,-~[~ for Rll~l~-+oo) 
and to determination of  coefficients for each independent solution from the condition that the general solution of  Eq. (2.2) 
satisfy the boundary condition at r /=  0. If we seek a solution of  Eq. (1.4) in the form 

D = C~(~)A~,<(~, ~ ,  ~) - -  C~(~)A~,(V, ~l, ~), 

then we obtain for determination of  CTS and C the following system of equations: 

( , ] [( ] 
a~ ~l/ii~ " C~ + C~,~ .(AZ, ~, B,,,<) -? (A,,, B,,) = O; (3.1a) 

r /  OA v it/,2 ,,,/i + "o;l 
~li;{ 

,' OATs By" ) (LaAa, s, 
,~c,, (3.1b) 
0~ + C~ (g~, ll~) = 0. 

Construction of  the Vector BTS reduces to solution of  the conjugate Orr-Sommerfeld  equation for the components 
BTS 2 which we denote by X: 

(al '  --  [5)(%" --  o~%) + 2aZ'/ . . . .  ! (%~v _ 2&-Z" + ~ )  (3.2) 
i l /L  2 ~t, 

with boundary conditions 

~I = 0  % = % '  = 0 ,  ~I--~ oo %, 7~'-+ 0. 
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Construction of the vector B v also reduces to solution of Eq. (3.2) for c~ = c~ m. To do this it is necessary to construct 
particular solutions of Eq. (3.2) with the same asymptotes as in the construction of the vector Av, and then to use the 
boundary conditions at ~? = 0 to define the coefficients with which these particular solutions appear in the general solution 
of Eq. (3.2). 

The solution of Eq. (3.1 a) with C v = 0 reduces to consideration of the effect of slight nonparallelism of the flow 
in the boundary layer upon its stability, and was considered in [4]. The terms containing C v in Eq. (3.1a) represent the 
generation of Tolmin-Schlichting waves by the turbulence of the incident flow, continuously distributed over the boundary 
layer. If x is not too large we may neglect the interaction CTS ~ C~ and assume that 

c~ (~) = ~o (co) e ~{ ~lj~ d~= % (~o) e 

where e 0 (co) corresponds to the amplitude of the incident flow perturbation with frequency co. In this approximation one 
can calculate the intensity of Tolmin-Schlichting wave sources as 

~ i  (o~ ,  ~ )  = - 
(ATs' BTs) 

Since at small x outside the instability region Tolmin-Schlichting waves damp out strongly, their effect on the boundary 
layer transition may be neglected, i.e., we may choose a section Xo, in which the approximation CTS(1) = 0 is applicable. 
Then, calculating CTS(~) from Eq. (3.1a) with a known background of perturbations in the incident flow, and using the fact 
that the nonlinear regime of flow development sets in at a velocity pulsation amplitude of the order of magnitude of 1% of 
the incident flow velocity [1 ], we may approximately determine at what frequency and in what section the amplitude of 
the Tolmin-Schlichting wave reaches the critical value e. ,  and thus calculate the dependence of the transition Reynolds 
number of the original turbulence. 

In conclusion, we note that the above mechanism of Tolmin-Schlichting wave generation by incident flow turbu- 
lence has a simple physical meaning. Since the flow lines of the main flow penetrate the boundary layer through its outer 
boundary, convection of turbulent perturbations propagating along the flow fines occurs within the boundary layer, where 
these perturbations are converted into Tolmin-Schlichting waves. This convection mechanism will then be most effective 
at low Reynolds numbers (in the vicinity of the turbulence), although the related generation "of Tolmin-  Schlichting waves 
will not affect the transition to turbulence because of intense damping of perturbations at low Reynolds numbers. On the 
other hand, the highest Tolmin-Schlichting wave amplification coefficients, observed in the low-frequency part of the 
spectrum, occur only at high Reynolds numbers, where the mechanism of convection of external perturbations within the 
boundary layer proves ineffective. Consequently, there exists a definite interval of Reynolds numbers, within which trans- 
formation of incident flow turbulence into Tolmin-Schlichting waves is the defining factor in transition to turbulence. 

It should be noted that tlie method presented above can be expanded in the very same manner to supersonic flows, 
in which for one frequency there may exist several nondamping modes, so that it will be necessary to also consider inter- 
action of these modes among themselves. 

In the present study the interaction between incident flow turbulence and Tolmin-Schlichting waves was produced 
by nonparallelness of the flow. In [6, 7] a weak compressibility of the flow was considered, and the possibility of To lmin-  
Schlichting wave generation by acoustical perturbations on the roughness of the surface flowed over was analyzed. 
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